by Corry Shores
[Search Blog Here. Index-tags are found on the bottom of the left column.]
[Central Entry Directory]
[Logic & Semantics, Entry Directory]
[Graham Priest, entry directory]
[Priest, Introduction to Non-Classical Logic, entry directory]
Summary of
Graham Priest
An Introduction to Non-Classical Logic: From If to Is
Ch.0 Mathematical Prolegomenon
Brief Summary:
setA set, X, is a collection of objects. If the set comprises the objects a1, ... , an, this may be written as {a1, ... , an}. If it is the set of objects satisfying some condition, A(x), then it may be written as {x :A(x)}.membershipa ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X means that a is not a member of X.singletonfor any a, there is a set whose only member is a, written {a}. {a} is called a singleton (and is not to be confused with a itself).empty setThere is also a set which has no members, the empty set; this is written as φ.subsetA set, X, is a subset of a set, Y, if and only if every member of X is a member of Y. This is written as X ⊆ Y. The empty set is a subset of every set (including itself).proper subsetX ⊂ Y means that X is a proper subset of Y; that is, everything in X is in Y, but there are some things in Y that are not in X. X and Y are identical sets, X = Y, if they have the same members, i.e., if X ⊆ Y and Y ⊆ X. Hence, if X and Y are not identical, X ≠ Y, either there are some members of X that are not in Y, or vice versa (or both).unionThe union of two sets, X, Y, is the set containing just those things that are in X or Y (or both). This is written as X ∪ Y. So a ∈ X ∪ Y if and only if a ∈ X or a ∈ Y.intersectionThe intersection of two sets, X, Y, is the set containing just those things that are in both X and Y. It is written X ∩ Y. So a ∈ X ∩ Y if and only if a ∈ X and a ∈ Y.relative complementThe relative complement of one set, X, with respect to another, Y, is the set of all things in Y but not in X. It is written Y − X. Thus, a ∈ Y − X if and only if a ∈ Y but a ∉ X.ordered pairAn ordered pair, ⟨a, b⟩, is a set whose members occur in the order shown, so that we know which is the first and which is the second. Similarly for an ordered triple, ⟨a, b, c⟩, quadruple, ⟨a, b, c, d⟩, and, in general, n-tuple, ⟨x1, . . . , xn⟩.cartesian productGiven n sets X1, . . . , Xn, their cartesian product, X1×· · ·×Xn, is the set of all n-tuples, the first member of which is in X1, the second of which is in X2, etc. Thus, ⟨x1, . . . , xn⟩ ∈ X1×· · ·×Xn if and only if x1 ∈ X1 and . . . and xn ∈ Xn.subset relationA relation, R, between X1×· · ·×Xn is any subset of X1×· · ·×Xn. | ⟨x1, . . . , xn⟩ ∈ R is usually written as Rx1 . . . xn.ternary and binary relationsIf n is 3, the relation is a ternary relation. If n is 2, the relation is a binary relation, and Rx1 x2 is usually written as x1Rx2.functionA function from X to Y is a binary relation, f , between X and Y, such that for all x ∈ X there is a unique y ∈ Y such that xfy. More usually, in this case, we write: f(x) = y.(Priest xxvii-xxix)
A set, X, is a collection of objects. If the set comprises the objects a1, ... , an, this may be written as {a1, ... , an}. If it is the set of objects satisfying some condition, A(x), then it may be written as {x :A(x)}. a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X means that a is not a member of X.(Priest xxii)
Examples: The set of (natural) numbers less than 5 is {0, 1, 2, 3, 4}. Call this F. The set of even numbers is {x :x is an even natural number}. Call this E. Then 3 ∈ F, and 5 ∉ E.(Priest xxvii)
for any a, there is a set whose only member is a, written {a}. {a} is called a singleton (and is not to be confused with a itself). There is also a set which has no members, the empty set; this is written as φ.(Priest xxvii)
Examples: {3} is the set containing just the number three. It has one member. It is distinct from 3, which is a number, not a set at all, and so has no members. 3 ∉ φ.(Priest xxviii)
A set, X, is a subset of a set, Y, if and only if every member of X is a member of Y. This is written as X ⊆ Y. The empty set is a subset of every set (including itself). X ⊂ Y means that X is a proper subset of Y; that is, everything in X is in Y, but there are some things in Y that are not in X. X and Y are identical sets, X = Y, if they have the same members, i.e., if X ⊆ Y and Y ⊆ X. Hence, if X and Y are not identical, X ≠ Y, either there are some members of X that are not in Y, or vice versa (or both).(Priest xxviii)
Examples: Let N be the set of all natural numbers, and E be the set of even numbers. Then φ ⊆ N and E ⊆ N. Also, E ⊂ N, since 5 ∈ N but 5 ∉ E. If X ⊆ N and X ≠ E then either some odd number is in X, or some even number is not in X (or both).(Priest xxviii)
The union of two sets, X, Y, is the set containing just those things that are in X or Y (or both). This is written as X ∪ Y. So a ∈ X ∪ Y if and only if a ∈ X or a ∈ Y. The intersection of two sets, X, Y, is the set containing just those things that are in both X and Y. It is written X ∩ Y. So a ∈ X ∩ Y if and only if a ∈ X and a ∈ Y. The relative complement of one set, X, with respect to another, Y, is the set of all things in Y but not in X. It is written Y − X. Thus, a ∈ Y − X if and only if a ∈ Y but a ∉ X.(xxviii)
Examples: Let N, E and O be the set of all numbers, all even numbers, and all odd numbers, respectively. Then E ∪ O = N, E ∩ O = φ. Let T = {x : x ≥ 10}. Then E − T = {0, 2, 4, 6, 8}.(Priest xxviii)
An ordered pair, ⟨a, b⟩, is a set whose members occur in the order shown, so that we know which is the first and which is the second. Similarly for an ordered triple, ⟨a, b, c⟩, quadruple, ⟨a, b, c, d⟩, and, in general, n-tuple, ⟨x1, . . . , xn⟩. Given n sets X1, . . . , Xn, their cartesian product, X1×· · ·×Xn, is the set of all n-tuples, the first member of which is in X1, the second of which is in X2, etc. Thus, ⟨x1, . . . , xn⟩ ∈ X1×· · ·×Xn if and only if x1 ∈ X1 and . . . and xn ∈ Xn. A relation, R, between X1×· · ·×Xn is any subset of X1×· · ·×Xn. | ⟨x1, . . . , xn⟩ ∈ R is usually written as Rx1 . . . xn. If n is 3, the relation is a ternary relation. If n is 2, the relation is a binary relation, and Rx1 x2 is usually written as x1Rx2. A function from X to Y is a binary relation, f , between X and Y, such that for all x ∈ X there is a unique y ∈ Y such that xfy. More usually, in this case, we write: f(x) = y.(Priest xxviii-xxix)
Examples: ⟨2, 3⟩ ≠ ⟨3, 2⟩, since these sets have the same members, but in a different order. Let N be the set of numbers. Then N × N is the set of all pairs of the form ⟨n,m⟩, where n and m are in N. If R = {⟨2, 3⟩, ⟨3, 2⟩} then R ⊆ N × N and is a binary relation between N and itself. If f = {⟨n, n2⟩ : n ∈ N}, then f is a function from numbers to numbers, and f(n) = n2.(Priest xxix)
No comments:
Post a Comment