5 Apr 2014

Katz and Sherry’s “Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond,” abstract, summary


summary by
Corry Shores
[Search Blog Here. Index-tags are found on the bottom of the left column.]

[Central Entry Directory]

[Calculus Entry Directory]

[Leibniz Entry Directory]

[Entry Directory for this Article]




Mikhail G. Katz  and David Sherry


“Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond”


Abstract



Summary of Abstract:

Many historians of calculus deny a strong continuity between Leibniz’ infinitesimal calculus and Robinson’s non-standard analysis. They (including Robinson) base this judgment largely on Berkeley’s criticism of Leibniz’ infinitesimal. The authors will show instead that Leibniz’ defense of infinitesimals has a stronger basis than Berkeley’s critique, thereby supporting the notion that non-standard analysis develops more directly from Leibniz’ calculus.



Abstract [quoting the text]:

Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley’s criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley’s criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz’s infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but rather pure fictions, like imaginaries, which are not eliminable by some syncategorematic paraphrase. We argue that Leibniz’s defense of infinitesimals is more firmly grounded than Berkeley’s criticism thereof. We show, moreover, that Leibniz’s system for differential calculus was free of logical fallacies. Our argument strengthens the conception of modern infinitesimals as a development of Leibniz’s strategy of relating inassignable to assignable quantities by means of his transcendental law of homogeneity. (Katz and Sherry, 571)



Bibliography:

Katz, M.; Sherry, D. Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond. Erkenntnis 78 (2013), no. 3, 571-625. See http://dx.doi.org/10.1007/s10670-012-9370-y, http://www.ams.org/mathscinet-getitem?mr=3053644, and http://arxiv.org/abs/1205.0174


The above bibliography material taken from the following source, a page by Mikhail Katz, which links to many other recent publications on infinitesimals.

http://u.cs.biu.ac.il/~katzmik/infinitesimals.html

No comments:

Post a Comment