My Academia.edu Page w/ Publications

16 Dec 2017

Goldschmidt (1.1.3.12) Le système stoïcien et l'idée de temps, “Pluralité des mouvements et mouvement cosmique”, summary

 

by Corry Shores

 

[Search Blog Here. Index tabs are found at the bottom of the left column.]

 

[Central Entry Directory]

[Stoicism, entry directory]

[Victor Goldschmidt, entry directory]

[Goldschmidt, Le système stoïcien, entry directory]

 

[The following is summary. Bracketed commentary is my own, as is any boldface. Proofreading is incomplete, which means typos are present, especially in the quotations. So consult the original text. Also, I welcome corrections to my interpretations, because I am not good enough with French or Greek to make accurate translations of the texts.]

 

 

 

Summary of

 

Victor Goldschmidt

 

Le système stoïcien et l'idée de temps

 

Première partie:

La théorie du temps et sa portée

 

A. La théorie du temps

 

III. La théorie du temps

 

1.1.3.12

Pluralité des mouvements et mouvement cosmique

 

 

 

Brief summary:

The Stoics, like Aristotle, understood time as having to do with the way that the cosmos’ regular circular motion relates to particular activities that have a finite interval during which they begin and end. For Aristotle the focus is on how the regular circular motion of the heavens sets a standard interval of duration [being perhaps the yearly circular revolution of the stars] by which other motions can be numerically quantified. The Stoics, while keeping this same structure, were less concerned with the numerical quantification involved and more in the way that the plurality of particular movements [or activities of bodies] are unified in the greater cosmic motion on account of their shared temporality.

 

 

 

Contents

 

1.1.3.12

[The Plurality of Motions and the One Cosmic Motion]

 

1.1.3.12.1

[Motion as Mathematical Number or as Dynamic-Vitalistic Interval]

 

1.1.3.12.2

[Zeno’s Pluralistic Definition of Time]

 

1.1.3.12.3

[Chrysippus’ Monistic Motion/Time as Being Like Aristotle’s Notion of a Cosmic Standard of Motion for Measuring Units of Time]

 

1.1.3.12.4

[The Non-Mathematical Sense of the Stoic Unit (or Unity) of Time and the Non-Opposition between Chrysippus’ and Zeno’s Theories of Time]

 

1.1.3.12.5

[Stoic Time Must Be Understood in Terms of the Relationship between Monism and Pluralism]

 

1.1.3.12.6

[The Stoic Plurality of Motions Ultimately Unified in the Singular Cosmic Motion]

 

 

 

 

Summary

 

1.1.3.12

[The Plurality of Motions and the One Cosmic Motion]

 

 

1.1.3.12.1

[Motion as Mathematical Number or as Dynamic-Vitalistic Interval]

 

(p.32: “Ce bref rappel était nécessaire, pour interpréter la première phrase...”)

 

[In sum: Aristotle defined time as the number of motion. The Stoics define it as the interval of motion. The Stoics thus did not see time mathematically, but rather dynamic-vitalistically.]

 

[In section 1.1.3.10, we examined a quotation in Stobaeus that is paraphrasing (or quoting) Chrysippus on the topic of time. Chrysippus first defines time as the interval of movement in the sense of measuring speed and slowness. Then in section 1.1.3.11, we looked at how Aristotle understands this idea of time being the number that measures motion.] We needed to examine the Aristotle material in order to understand the first sentence of our text [about Chrysippus’ philosophy of time.] There is a discrepancy. Chrysippus says that time is the interval of movement, while Aristotle says time is the number of movement. Chrysippus’ substitution likely resulted from the desire to make the definition of time harmonize with the definition of place. [I do not know exactly what this is referring to, but consider this quotation from Sextus Empiricus about the Stoic’s view on place: “Place is what is occupied by an existent and made equal to what occupies it (by ‘existent they now mean body, as is clear from the interchange of names). And they say that room is an interval partly occupied by a body and partly unoccupied.” (Against the professors 10.3-4 (SVF 2.505, part) in Long & Sedley I, p.294.] However, we should note that the mathematical aspect of time does not seem preserved. [Perhaps the idea is that unlike in Aristotle where time is something that gives quantifying measure, for the Stoics it does not have that feature. But I am not sure what is meant here.] Instead of the mathematical conceptions we see in previous theories of time, here we have a dynamic vitalism. [Perhaps that dynamic vitalism of time as an interval is something like time is a block of activity, rather than a quantifying qualification of motion. But again, I am not sure.] This opposition between the mathematical and dynamic-vitalistic conceptions is seen in the [Stoic] thesis that in time all things move and exist. However, for Aristotle, eternal beings are not in time; for, they are not enveloped by time; their existence is not measured by time. [The distinction is not so obvious to me yet. It seems to be that for the Stoics, there are no beings which are atemporal, but for Aristotle there are, namely, eternal beings, which exist but cannot be measured by time.] This is because for the Stoics, there are no beings which are not active bodies. But we note that the Stoics adopt an Aristotle-like formulation, that time is the measure of speed and slowness. [(See the quotation below, as I do not quite grasp this next point well. It might be: as such, the Stoics adopt Aristotle’s notion that movement and time are reciprocally determined, rather than giving time as number the priority and primacy over physical movement.]

12. Ce bref rappel était nécessaire, pour interpréter la première phrase de notre texte. Si le temps est défini, non plus le nombre, mais « l’intervalle » du mouvement, cette substitution vient sans doute « du désir de mettre en harmonie la définition du lieu et celle du temps8 » ; il est notable, cependant, que l’aspect mathématique du temps, plus important encore que chez Aristote, pour les Pythagoriciens et | pour Platon, ne semble pas conservé ; le vitalisme dynamique s’oppose ainsi au mathématisme des systèmes précédents. L’opposition se précise dans la thèse : « C’est dans le temps que toutes choses se meuvent et existent », alors que, pour Aristote, « les êtres éternels en tant qu’éternels ne sont pas dans le temps », car, ajoute-t-il, « ils ne sont pas enveloppés par le temps, et leur existence n’est pas mesurée par le temps »1. Or les êtres, pour les Stoïciens, sont des corps agissants. Aussi, quand ils reprennent la formule aristotélicienne du temps, « mesure de la rapidité et de la lenteur », n’y a-t-il aucune raison de penser qu’ils abandonnent par là la détermination réciproque du mouvement et du temps, enseignée par Aristote ; autrement, on assurerait au temps-nombre sur le mouvement physique, une sorte de priorité et de primauté, tout à fait incompatibles avec l’esprit du système.

(32-33)

8. Incorp., p. 54.

(32. Note: Incorp. is Bréhier’s La théorie des incorporels dans l'ancien stoïcisme.)

1. Phys. Δ, 12, 221 b 3-5.

(33)

 

 

1.1.3.12.2

[Zeno’s Pluralistic Definition of Time]

 

(p.33: “De quel mouvement, le temps est-il l’intervalle ...”)

 

[In sum: Zeno of Citium had a competing definition for time, namely, that it is the interval of any movement whatsoever. But Chrysippus’ definition, that time is more specifically the interval of the movement of the world, is the Stoic definition that prevailed.]

 

But we now wonder, what movement is time the interval of? Chrysippus’ response to this question appears to be at odds with that of Zeno. Simplicius says that Zeno the Stoic defined time as the interval of any movement whatever. This definition is unlike Chrysippus’: time is the interval of the movement of the world. Simplicius elaborates: he [Zeno? Chrysippus?] does not combine two definitions into one [but I am not sure what that would mean. Perhaps we might rectify them by saying that the only movements are those of the world]; rather, he establishes one formula against the contrary formulations [or critiques: “négations”] of the other Stoics. Arius Didymus confirms this first clause. Regarding the second clause, the “négations” come in part from among the other Stoics. But Chrysippus’ definition seems to have prevailed, because Apollodorus and Diogenes Laertius say that for the Stoics, time, an incorporeal, is the interval of the movement of the world.

De quel mouvement, le temps est-il l’intervalle ? – Il semble que la réponse de Chrysippe s’oppose à celle de Zénon. « Parmi les Stoïciens », écrit Simplicius, « Zénon a défini le temps comme l’intervalle de n’importe quel mouvement, sans plus, alors que Chrysippe l’a défini : l’intervalle du mouvement du monde » ; Simplicius précise même « Il ne réunit pas deux définitions en une seule, mais il établit une seule formule qu’il soutient contre les négations des autres »2. La première partie de ce témoignage est confirmée par Arius Didyme3 ; dans la deuxième phrase, faut-il comprendre que ces « négations » soient venues, « du moins en partie, de l’intérieur de l’école »?4 – Il semble, en tout cas, que l’autorité de Chrysippe ait prévalu, puisque Apollodore la suit5 et que Diogène Laërce, dans son exposé d’ensemble du stoïcisme, écrit : « Il faut encore compter parmi les incorporels, le temps, qui est l’intervalle du mouvement du monde »6.

(33)

2. Simpl., Cat., f. 88 Z (S.V.F., II, 510).

3. Arius Did., 26 (Dox. gr., 461, 4 = S.V.F., I, 93).

4. Incorp., p. 55.

5. Arius Did., 26 (Dox. gr., 461, 8 = S.V.F., II, 520).

6. Diog. Laërt., VII, 141.

(33)

 

 

1.1.3.12.3

[Chrysippus’ Monistic Motion/Time as Being Like Aristotle’s Notion of a Cosmic Standard of Motion for Measuring Units of Time]

 

(pp.33-34: “L’innovation de Chrysippe n’est pas sans analogie ...”)

 

[In sum: Aristotle comes to define time as a regular circular motion (like the sun’s daily circular motion dividing the stars’ yearly circular motion so to measure out units of days and years. Since these units are intervals, that makes Chrysippus’ definition of time as the interval of motion not too dissimilar from Aristotle’s. And heaven’s motion as the standard against which all other motions are measured is responsible for the “unit” [or the “unity”] of time, because all times and motions are ultimately measured by means of the one standard motion, thereby unifying all motions/times and in doing so producing standardized units of time.)]

 

Chrysippus’ innovation [of unifying time around a cosmic motion] can be seen as analogous to Aristotle’s theory. Since in the end Aristotle’s theory construes time as a regular circular motion on account of the number of its motion being the most known, we obtain what we would today call the unit [or the unity] of time. [I do not follow that point, but let us look at it. In the cited Aristotle Physics passages, we have:

Now there is such a thing as locomotion, and in locomotion there is included circular movement, and everything is measured by some one thing homogeneous with it, units by a unit, horses by a horse, and similarly times by some definite time, and, as we said, time is measured by motion as well as motion by time (this being so because by a motion definite in time the quantity both of the motion and of the time is measured): if, then, what is first is the measure of everything homogeneous with it, regular circular motion is above all else the measure, because the number of this is the best known. Now neither alteration nor increase nor coming into being can be regular, but locomotion can be. This also is why time is thought to be the movement of the sphere, viz. because the other movements are measured by this, and time by this movement.

As far as I gather without having worked through Aristotle’s text, the argument seems to be that with motion we measure time (and likewise with time we measure motion.) The motion of the heavens is regular and circular, which provides a standard of motion against which other motions are measured. (There is no mention of the heavens in this part of the Aristotle text. I make that association by means of the Goldschmidt text at footnote 2 and the Bréhier text it cites. Here is a portion:

Pour faire valoir cette hypothèse, Aristote expliquait que, de même que chaque être est mesuré par une unité de la même espèce, de même le temps est mesuré par un | temps défini. Ce temps défini (ce que appellerions aujourd’hui l’unité de temps) est mesuré lui-même par un mouvement défini. Le seul mouvement définit que nous ayons à notre disposition est le mouvement circulaire du ciel, parce que seul, il est uniforme (ὁμαλής). C’est pourquoi, dit-il, le temps paraît être le mouvement de la sphère1.

(Bréhier, pp.54-55).

1. Phys. IV, 14, 419.

This is from what I think is the cited part of Physics IV, 14 ((but I have not yet figured out what the 419 refers to)):

image

Which we saw already above:

This also is why time is thought to be the movement of the sphere, viz. because the other movements are measured by this, and time by this movement.

So “the sphere” ((τῆς σφαίρας (ἡ σφαῖρᾰ))) would seem to be the heavenly sphere, as far as I can tell, but this is not yet absolutely clear to me in the Aristotle text, but it is more apparent to me in the Bréhier text.) So given the intimate relation between motion and time, when we compare the heavenly motions against others, we also are measuring times. If I would pose my own example, I would first think of the stars’ circular movement throughout the year. We compare the stars’ regular motion to the sun’s (or to the stars’) daily motion, and we obtain a ratio of something like daily 365 sun rotations for every yearly star rotation. That gives us not just a measure of motion, where we see that one movement is so much briefer (or perhaps seemingly “faster”) than the other, but it also divides the time of the star-motion into 365 parts. In other words, the circular return of the stars has a certain duration, and the circular return of the sun has another duration, and since both motions are regular, we can take one motion’s duration as a unit of measure to quantify the other. And similarly the sun’s daily motion is further divided into hour clock-hand rotations whose regular movements count 24 rotations per sun rotation, and there are 60 rotations per hour for the minute-hand and 60 per minute for the second-hand. (I am not sure why the heavenly motion’s number is said to be the most “known”. Why is the number of the sun’s motion not the most known? I wonder if the idea has anything to do with the fact that the only regular motion with a longer duration would be the processional movement, which takes many thousands of years and thus is only known mathematically and not by experience. But I suppose there are planetary movements that are longer than a year.) And this is how we today understand a “unit” of time (which is conceived in terms of a unity of motions/times). Then bringing this back to Goldschmidt’s point, maybe the idea is that for the Stoics, the “interval” of motion would be similar to a smaller movement carved out of the larger cosmic movement and metrically reunified with  it to obtain a durational measure given in standardized units. But I am not sure.]

L’innovation de Chrysippe n’est pas sans analogie avec la théorie d’Aristote, qui finit par ramener le temps au « transport circulaire régulier... parce que son nombre est | le plus connu »1 ; on obtient ainsi « ce que nous appellerions aujourd’hui l’unité de temps »2.

(33-34)

1. Phys. Δ, 14, 223 b 19-20.

2. Incorp., p. 55. – Il reste, entre autres, cette différence que la révolution du Premier Ciel (par où « sont mesurés tous les mouvements » ; Phys., Θ, 9, 265 b 10) s’effectue, grâce au Premier Moteur, en un « mouvement éternel et en un temps infini » (Phys., Θ, 10, 267 b 25) ; alors que « l’intervalle du mouvement du monde », c’est-à-dire, la période cosmique, est défini.

(34. Note: Incorp. is Bréhier’s La théorie des incorporels dans l'ancien stoïcisme.)

 

 

 

1.1.3.12.4

[The Non-Mathematical Sense of the Stoic Unit (or Unity) of Time and the Non-Opposition between Chrysippus’ and Zeno’s Theories of Time]

 

(p.34: “Mais cette « unité », dans le système stoïcien...”)

 

[In sum: The unit (or unity) in the Stoic theory does not have primarily a mathematical meaning, like it does in Aristotle’s. Also, it could be that Chrysippus’ theory is not really in opposition to Zeno’s.]

 

So although there is in a sense a unit [or a unity] in the Stoic theory of time that is more or less analogous to the unit [or the unity] of time in Aristotle’s theory, it must not be understood as having primarily a mathematical meaning. [I am not certain what is the non-mathematical sense of the unit or unity in the Stoic theory of time. Recall from section 1.1.3.10 Chrysippus’ definition of time: “Chrysippus says that time is the interval of motion according to which the measure of speed and slowness is sometimes spoken of; or, time is the interval which accompanies the motion of the cosmos” (Inwood and Gerson 2008: 88.) Perhaps we should understand the intervals more in terms of the composition of the unified motion (being unified but carvable into smaller particular movements) rather then as a mathematical entity like a numerical ratio. But I am really not sure.] And we also wonder, is Chrysippus’ addition to Zeno’s formula of time really in opposition to it? For, can we not say that Chrysippus retains Zeno’s definition, but merely adds to it? [Recall from section 1.1.3.12.2 above that Zeno defined time as the interval of any movement whatsoever, while Chrysippus defines it more specifically as the interval of the movement of the world. I am not sure, but maybe the idea Goldschmidt has in mind here is that since the interval of movement of the world measures all other movements whatsoever (or is otherwise bound up with them intimately), that it is still keeping the sense of Zeno’s definition, but only giving more specifics.]

Mais cette « unité », dans le système stoïcien, ne devait pas avoir un sens principalement mathématique. De plus, est-il sûr que l’adjonction faite par Chrysippe à la formule de Zénon, s’oppose à celle-ci ? Il faut bien croire que, dans l’esprit de Chrysippe, il n’en était rien ; puisque, à côté de sa propre définition, il conservait celle de Zénon3.

(34)

3. La différence entre les deux formules est fortement accusée dans La Théorie des Incorporels (pp. 54-55). Vu l’extrême pauvreté de nos sources, la démonstration pouvait difficilement éviter un glissement. Initialement, l’opposition est entre : « n’importe quel mouvement » – « le mouvement du monde » ; c’est certainement ainsi qu’il faut l’entendre (cf. Simplicius, p. 33, n. 2) ; le tout est de savoir, si c’est là une opposition réelle (cf. la suite de notre texte). Plus loin, l’opposition est entre : temps illimité – temps limité ; mais cette distinction, tirée du texte d’Arius Didyme, répond à un tout autre problème et, surtout, ce texte même nous apprend que ces deux formules ne sont pas incompatibles, puisque Chrysippe, quitte à préciser que le temps « se prend dans deux acceptions », les admettait toutes deux.

(34)

 

 

1.1.3.12.5

[Stoic Time Must Be Understood in Terms of the Relationship between Monism and Pluralism]

 

(p.34: “On admettra d’autant moins, sur ce point ...”)

 

[In sum: (Aristotle’s varying theories of time are placed into harmony by designating a hierarchy of the sciences such that certain definitions would be given a higher priority. But for the Stoics, rectifying Zeno’s and Chrysippus’ theories of time will be a matter of the problem of the relationship between monism and pluralism.)]

 

[I will probably missummarize the next point, but it might be the following. Aristotle himself held two different but analogous theories that were not really in opposition to each other. Thus we should not necessarily conclude that Zeno’s and Chrysippus’ theories are in opposition. The problem of rectifying Aristotle’s divergent theses is resolved by means of his hierarchy of the sciences. (I am not sure what is meant here. It might have something to do with what was said in section 1.1.3.11.2. The idea might be that the definition of time understood in its cosmological or theological sense is to take precedence over its physical sense. But I am not sure.) But the Stoics have a homogenous system (perhaps meaning that there is no such hierarchy of sciences for them), and this problem of rectifying Zeno’s and Chrysippus’ theories of time boils down to the more general problem of the relationship between monism and pluralism.]

On admettra d’autant moins, sur ce point, une opposition entre les deux fondateurs, qu’Aristote a pu soutenir, à la fois, deux thèses tout à fait analogues. La difficulté apparente, chez Aristote, se résolvait grâce à la hiérarchie des sciences ; dans le système homogène du stoïcisme, elle se ramène au problème, beaucoup plus général, des rapports entre monisme et pluralisme.

(34)

 

 

 

1.1.3.12.6

[The Stoic Plurality of Motions Ultimately Unified in the Singular Cosmic Motion]

 

(pp.34-35: “La fin de notre texte, où Chrysippe allègue l’exemple ...”)

 

[In sum: For the Stoics, there is a singular regular motion that provides the standard for measuring intervals of time that occur during the durations of particular actions (motions) happening simultaneously with that steady movement of the cosmic motion. Since all motions obtain their temporal traits by relation to this cosmic time, we have both a plurality of particular motions, all of which being ultimately absorbed into a singular cosmic motion, on account of their mutually binding temporal relationality.]

 

At the end of the Chrysippus text that we are examining (see section 1.1.3.10), he provides the example of walking. [Recall the end part of the quotation:

Consequently no time is present exactly, but it is broadly said to be so. (4) He also says that only the present belongs; the past and the future subsist, but belong in no way, just as only predicates {κατηγορήματα} which are [actual] attributes {συμβεβηκότα} are said to belong, for instance, walking around belongs to me when I am walking around, but it does not belong when I am lying down or sitting.

(Long and Sedley 1987: I, 304; II, 301-302. Curly bracketed insertions mine.)

And quoting Goldschmidt on that part:

en sorte qu’aucun temps n’est rigoureusement présent, mais on le dit (présent) selon une certaine étendue. Il soutient que, seul, le présent existe ; le passé et le futur subsistent, mais n’existent pas du tout, selon lui ; de la même manière, seuls, les attributs qui sont accidents (actuels) sont dits exister : par exemple, la promenade existe pour moi, quand je me promène ; mais, quand je suis couché ou assis, elle n’existe pas ».

(31)

] [I might have the next part wrong, but it might be: This ending part of the text proves that any movement whatsoever has an interval which serves to determine the time. (I do not get Goldschmidt’s point here, but I will guess is the following. Walking has an interval, which is the duration of the walking. That interval between the beginning and ending of the motion determines the temporal length or duration of the motion. But were we not walking, we would be doing some other action, with lying down even being considered an action with a duration. So it is the interval of any motion whatsoever (if not one than some other that happens to currently be in effect, but any actual motion whatsoever will do) that determines the measure of duration during that motion. But please trust the quotation instead of my guess.] [Now recall that at the beginning of the quotation, Chrysippus gives something akin Zeno’s formulation: “Chrysippus says that time is the interval of motion according to which the measure of speed and slowness is sometimes spoken of.” Here perhaps it is like Zeno’s because Chrysippus is referring to speed and slowness, which thus includes motions that are variable, and therefore he refers to any motions whatever.] So when at the beginning of the text Chrysippus repeats Zeno’s formulation for time, which is conducive to a pluralistic view on time, it is not just Chrysippus showing courteous deference to Zeno. For, all these diverse movements must be referred back [and recomposed with] the cosmic [regular] motion. Thus the world, which is to be understood as a system, is unified as a result of the collaboration and harmony between the things in the heavens and the things on earth [from Diogenes Laertius: “the sympathy and tension which binds together things in heaven and earth”.] Thus what explains Chrysippus’ definition of time is his desire for unification, and not so much an interest in establishing a unit of measure. As we have noted before, his effort to unite [the motions under a common cosmic time] without confusing them responds to an essential requirement of the system. Thus, since Zeno, the Stoics claimed there was but one cause, namely, God. And Seneca criticized the other philosophers, Plato and Aristotle especially, for resorting to a host of causes without having any real need to do so. Yet, Seneca says “We, however, are looking now for the primary and generic cause” (Letters on Ethics, 65,12, p.187); but the Stoics are never content with this too general assertion. As they wanted to explain phenomena in detail, they were always led to push even further their analysis of the future, to multiply the distinctions, and to thereby to incur Alexander of Aphrodisias’ criticism that they produced a swarm of causes, which they listed. We note in passing that the opposition here is not at all between theology and physics, but between monism and pluralism. We find the same “structure” in the subject of virtue, which the Stoics claim was unified while at the same time they diversify the concrete modalities to the point of having generated, as Plutarch puts it, a swarm of virtues.

La fin de notre texte, où Chrysippe allègue l’exemple de la promenade, prouve que « n’importe quel mouvement » a un intervalle dont il détermine le temps ; si donc, au début du même texte, Chrysippe répète la formule de Zénon, accueillante au pluralisme, ce n’est pas par simple courtoisie. Mais, d’autre part, la diversité des mouvements doit être ramenée au mouvement cosmique ; de même que le monde, qui est un système, est « unifié, par suite de la conspiration et de l’accord entre les choses célestes et les choses de la terre »4. C’est un désir d’unification, bien plus que le souci d’établir une unité de mesure, qui explique la thèse de Chrysippe. Cet effort pour unir sans confondre, que nous | avons déjà eu l’occasion de noter1, répond à une exigence essentielle du système. Ainsi, depuis Zénon, les Stoïciens n’admettent qu’une cause unique, qui est Dieu2, et Sénèque reproche aux autres philosophes, notamment à Platon et à Aristote, de recourir sans nécessité à une « foule de causes »3 ; or, dit-il, « ce que nous recherchons à présent, c’est la cause première et générale »4. Mais les Stoïciens ne se sont jamais contentés de cette affirmation, trop « générale » ; soucieux d’expliquer les phénomènes jusque dans leur détail, ils ont été amenés à pousser toujours plus loin l’analyse du devenir, à multiplier les distinctions, et à encourir ainsi le reproche d’Alexandre d’Aphrodise : « C’est un essaim de causes, dont ils établissent la liste5. » Notons au passage que l’opposition, ici, n’est pas du tout entre théologie et physique, mais entre monisme et pluralisme6. On retrouve la même « structure » au sujet de la vertu, dont les Stoïciens affirment l’unité et dont, en même temps, ils diversifient les modalités concrètes, au point d’admettre, selon l’expression de Plutarque, « un essaim de vertus »7.

(34-35)

4. Diogène Laërt., VII, 138, 140.

(34)

1. P. 24.

2. Diog. Laërt., VII, 134.

3. Sénèque, Ep., 65, 11 (S.V.F., II, 346 a) : « Haec, quae ab Aristotele et Platone ponitur, turba causarum... »

4. Id., ibid., § 12 : « Sed nos nunc primam et generalem quaerimus causam. »

5. Alex., de fato, 22 (S.V.F., II, 945) : Σμῆνος γὰρ αἰτίων καταλέγουσιν.

6. Ces deux alternatives sont parfois confondues. Ainsi on estime, avec Aristote (Métaph., A, 4, 985 a 17-22) qu’Anaxagore ne recourt au Noûs divin que dans les cas où il ne peut trouver d’explication proprement physique ; « mais, écrit Zeller, Anaxagore prend un intérêt trop vif aux questions physiques, pour pouvoir se borner, en fait, à des considérations théologiques » (La phil. des Grecs, trad. E. Boutroux, t. II, Paris, 1882, p. 407). – Mais cette alternative est très superficielle ; tout le Timée prouve la possibilité d’une explication, tout ensemble physique et théologique ; il conjugue, pour chaque phénomène, la « cause divine » et la Nécessité (c’est-à-dire la cause mécanique). L’alternative fondamentale est entre la théorie générale de la cause et l’application concrète de cette théorie, et le problème fondamental (et commun au physicien et au théologien) consiste à protéger le monisme de la théorie, à la fois contre le reproche de stérilité et contre la dispersion dans un pluralisme à la mesure des phénomènes où elle s’aventure.

7. Plut., de virt. mor., 2, 441 b (S.V.F., III, 255) : Σμῆνος ἀρετῶν, cf. Ménon, 72 a 7.

 

 

 

 

From:

Goldschmidt, Victor. (1953). Le système stoïcien et l'idée de temps. Paris: Vrin.

 

 

Also cited:

 

Inwood, Brad, and Gerson, Loyd P. 2008. The Stoics Reader. Selected Writings and Testimonia, edited and translated by Brad Inwood and Loyd P. Gerson. Indianapolis and Cambridge: Hackett.

 

Long, Anthony A. and David N. Sedley. 1987. The Hellenistic Philosophers, vol.2: Greek and Latin Texts with Notes and Bibliography. Cambridge: Cambridge University Press.

 

Seneca. 2015. Letters on Ethics. To Lucilius. Translated by Margaret Graver and A.A. Long. Chicago and London: University of Chicago.

 

 

.

No comments:

Post a Comment